Uncertainty in Prognostics and Health Management: An Overview

نویسندگان

  • Shankar Sankararaman
  • Kai Goebel
چکیده

This paper presents an overview of various aspects of uncertainty quantification in prognostics and health management. Since prognostics deals with predicting the future behavior of engineering systems and it is almost practically impossible to precisely predict future events, it is necessary to account for the different sources of uncertainty that affect prognostics, and develop a systematic framework for uncertainty quantification and management in this context. Researchers have developed computational methods for prognostics, both in the context of testing-based health management and conditionbased health management. However, one important issue is that, the interpretation of uncertainty for these two different types of situations is completely different. While both the frequentist (based on the presence of true variability) and Bayesian (based on subjective assessment) approaches are applicable in the context of testing-based health management, only the Bayesian approach is applicable in the context of condition-based health management. This paper explains that the computation of the remaining useful life is moremeaningful in the context of condition-based monitoring and needs to be approached as an uncertainty propagation problem. Numerical examples are presented to illustrate the various concepts discussed in the paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uncertainty in Prognostics and Systems Health Management

This paper presents an overview of various aspects of uncertainty quantification and management in prognostics and systems health management. Prognostics deals with predicting possible future failures in different types of engineering systems. It is almost practically impossible to precisely predict future events; therefore, it is necessary to account for the different sources of uncertainty th...

متن کامل

Preparation of Papers for AIAA Technical Conferences

With recent advancements in prognostics methodologies there has been a significant interest in maturing Prognostics and Health Management (PHM) to increase its technology readiness level for onboard deployments. Active research is underway both in industry and academia to address shortcomings in availability of run-to-failure data, accelerated aging environments, real-time prognostics algorithm...

متن کامل

Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression

State of health (SOH) estimation plays a significant role in battery prognostics. It is used as a qualitative measure of the capability of a lithium-ion battery to store and deliver energy in a system. At present, many algorithms have been applied to perform prognostics for SOH estimation, especially data-driven prognostics algorithms supporting uncertainty representation and management. To des...

متن کامل

Physics-of-failure-based prognostics for electronic products

This paper presents a physics-of-failure (PoF)-based prognostics and health management approach for effective reliability prediction. PoF is an approach that utilizes knowledge of a product’s life cycle loading and failure mechanisms to perform reliability design and assessment. PoF-based prognostics permit the assessment of product reliability under its actual application conditions. It integr...

متن کامل

A Discussion on Uncertainty Representation and Interpretation in Model-based Prognostics Algorithms based on Kalman Filter Estimation Applied to Prognostics of Electronics Components

This article discusses several aspects of uncertainty representation and management for model-based prognostics methodologies based on our experience with Kalman Filters when applied to prognostics for electronics components. In particular, it explores the implications of modeling remaining useful life prediction as a stochastic process and how it relates to uncertainty representation, manageme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014